\(\int \frac {1}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx\) [430]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 117 \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\frac {3 \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{2 \sqrt {2} a^{3/2} d}-\frac {\sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \]

[Out]

-1/2*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(3/2)+3/4*arctanh(1/2*sin(d*x+c)*a^(1/2)*sec(d*x+c)^(1/2)*
2^(1/2)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^(3/2)/d*2^(1/2)

Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {4349, 3896, 3893, 212} \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\frac {3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {\sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2}} \]

[In]

Int[1/(Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^(3/2)),x]

[Out]

(3*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])]*Sqrt[Cos[c + d*x]]*Sq
rt[Sec[c + d*x]])/(2*Sqrt[2]*a^(3/2)*d) - Sin[c + d*x]/(2*d*Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3893

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*b*(d/
(a*f)), Subst[Int[1/(2*b - d*x^2), x], x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 3896

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-Cot[
e + f*x])*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*(2*m + 1))), x] + Dist[m/(a*(2*m + 1)), Int[(a + b*Csc
[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && EqQ[m + n +
 1, 0] && LtQ[m, -2^(-1)]

Rule 4349

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{(a+a \sec (c+d x))^{3/2}} \, dx \\ & = -\frac {\sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}}+\frac {\left (3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx}{4 a} \\ & = -\frac {\sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}}-\frac {\left (3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{2 a d} \\ & = \frac {3 \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{2 \sqrt {2} a^{3/2} d}-\frac {\sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.32 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.12 \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=-\frac {\left (2 \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))}+3 \sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) (1+\sec (c+d x))\right ) \sin (c+d x)}{4 a d \sqrt {-1+\cos (c+d x)} (1+\cos (c+d x)) \sqrt {\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \]

[In]

Integrate[1/(Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^(3/2)),x]

[Out]

-1/4*((2*Sqrt[-((-1 + Sec[c + d*x])*Sec[c + d*x])] + 3*Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Se
c[c + d*x]]]*(1 + Sec[c + d*x]))*Sin[c + d*x])/(a*d*Sqrt[-1 + Cos[c + d*x]]*(1 + Cos[c + d*x])*Sqrt[Sec[c + d*
x]]*Sqrt[a*(1 + Sec[c + d*x])])

Maple [A] (verified)

Time = 1.80 (sec) , antiderivative size = 164, normalized size of antiderivative = 1.40

method result size
default \(-\frac {\left (3 \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {2}\, \cos \left (d x +c \right )+3 \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {2}+2 \sin \left (d x +c \right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\right ) \sqrt {\cos \left (d x +c \right )}\, \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{4 d \,a^{2} \left (\cos \left (d x +c \right )+1\right )^{2} \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(164\)

[In]

int(1/(a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/4/d/a^2*(3*arctan(1/2*sin(d*x+c)*2^(1/2)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*2^(1/2)*cos(d*x+c)+3*arc
tan(1/2*sin(d*x+c)*2^(1/2)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*2^(1/2)+2*sin(d*x+c)*(-1/(cos(d*x+c)+1))^
(1/2))*cos(d*x+c)^(1/2)*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)^2/(-1/(cos(d*x+c)+1))^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 340, normalized size of antiderivative = 2.91 \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\left [\frac {3 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, -\frac {3 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) + 2 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \]

[In]

integrate(1/(a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[1/8*(3*sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a)*sqrt(
(a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 +
 2*cos(d*x + c) + 1)) - 4*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(
d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d), -1/4*(3*sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(-a)*arc
tan(sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))/(a*sin(d*x + c))) + 2*sqrt((a*
cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c)
+ a^2*d)]

Sympy [F]

\[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {1}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}} \sqrt {\cos {\left (c + d x \right )}}}\, dx \]

[In]

integrate(1/(a+a*sec(d*x+c))**(3/2)/cos(d*x+c)**(1/2),x)

[Out]

Integral(1/((a*(sec(c + d*x) + 1))**(3/2)*sqrt(cos(c + d*x))), x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1031 vs. \(2 (94) = 188\).

Time = 0.37 (sec) , antiderivative size = 1031, normalized size of antiderivative = 8.81 \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

[In]

integrate(1/(a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/4*(3*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x +
1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(2*d*x + 2*c)^2 + 12*(log(cos(1/2*d*x + 1/
2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2
*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c)^2 + 3*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 +
 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) +
1))*sin(2*d*x + 2*c)^2 + 12*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1)
 - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(d*x + c)^2 + 2*(6*(l
og(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2
+ sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c) + 3*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*
d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 3*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1
/2*d*x + 1/2*c) + 1) - 2*sin(3/2*d*x + 3/2*c) + 2*sin(1/2*d*x + 1/2*c))*cos(2*d*x + 2*c) + 4*(3*log(cos(1/2*d*
x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 3*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d
*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) + 2*sin(1/2*d*x + 1/2*c))*cos(d*x + c) + 4*(3*(log(cos(1/2*d*x + 1
/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/
2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(d*x + c) + cos(3/2*d*x + 3/2*c) - cos(1/2*d*x + 1/2*c))*sin(2*d*x +
2*c) - 4*(2*cos(d*x + c) + 1)*sin(3/2*d*x + 3/2*c) + 8*cos(3/2*d*x + 3/2*c)*sin(d*x + c) - 8*cos(1/2*d*x + 1/2
*c)*sin(d*x + c) + 3*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 3*log
(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) + 4*sin(1/2*d*x + 1/2*c))/((sqr
t(2)*a*cos(2*d*x + 2*c)^2 + 4*sqrt(2)*a*cos(d*x + c)^2 + sqrt(2)*a*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*a*sin(2*d*x
+ 2*c)*sin(d*x + c) + 4*sqrt(2)*a*sin(d*x + c)^2 + 4*sqrt(2)*a*cos(d*x + c) + 2*(2*sqrt(2)*a*cos(d*x + c) + sq
rt(2)*a)*cos(2*d*x + 2*c) + sqrt(2)*a)*sqrt(a)*d)

Giac [F]

\[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\int { \frac {1}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate(1/(a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate(1/((a*sec(d*x + c) + a)^(3/2)*sqrt(cos(d*x + c))), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {1}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

[In]

int(1/(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^(3/2)),x)

[Out]

int(1/(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^(3/2)), x)